
Written Exam for the M.Sc. in Economics, Winter 2010/2011

ADVANCED MACROECONOMETRICS

Proposed Solution

About the Exam

The examination considers econometric models for the term structure, i.e. models for

the relationship between interest rates with different maturities. The purpose of the

examination is to assess the students understanding of the CVAR model, their ability to

use statistical procedures to make inference on the equilibrium structures and the dynamic

adjustment properties, as well as their ability to interpret the results.

All assignments are based on different data sets. They all consists of five interest rates

collected in the  = 5 dimensional data vector,

 = (0 : 1 : 2 : 5 : 10)
0  (0.1)

simulated from the following data generating process (DGP):⎛⎜⎜⎜⎜⎜⎜⎝
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with  ∼ (0Ω), with
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Ω =
1

1000

⎛⎜⎜⎜⎜⎜⎜⎝
15454

10313 16909

10163 16147 18138

9000 14768 18312 24879

5733 9626 13321 21009 23013

⎞⎟⎟⎟⎟⎟⎟⎠ 

The levels of the variables are set to reflects realizations of interest rates. 306 obser-

vations are generated covering monthly data from January 1985 to September 2010.

The students are informed that the regulations of international capital flows were

changed in November 2000, and could have affected the equilibrium relationships. All

datasets have an outlier at that date, but it is does not change the equilibrium structure.

In addition, outlying observations are drawn randomly with a probability of 1%, and the

typical data set will have approximately 4 outliers, all with a magnitude of 5 standard

deviations.

For all data sets it is ensured that, if the correct outliers are modelled with dummy

variables, the trace test for the cointegration rank will correctly suggest a rank of  = 2,

and the true structure of the cointegration space is not rejected by a likelihood ratio

(LR) test. It is not important per se that the students recover the true DGP, it is more

important that they use sound arguments and that they convincingly motivate the choices

they make.

The proposed solution below is based on the data for a tentative exam number 1001

(i.e. Data1001.xls).

1 Background

The students are asked to think about the relationships between pushing and pulling

forces and the relationship between the CVAR, including the cointegrating relationships,

and the Granger representation.

[1] Based on a baby model

∆ = 0−1 + 

the solution should derive the Granger representation. This corresponds to Section

5.4 in Juselius (2006), and, since the initial value is zero, we end with

 = ⊥
¡
0⊥⊥

¢−1
0⊥

X
=1

 + 
¡
0

¢−1 −1X
=0

¡
 + 0

¢
− (1.1)

Simply stating the solution is not sufficient here, as a minimum it should be noted

that 0 and 0⊥ are solved separately and combined using the relevant projection
identity. The good solution actually does it.

Next, the solution should note that the pulling forces are parametrized as the correc-

tion toward equilibrium in the CVAR equations, i.e. the coefficients in , while the
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pushing forces are visible in (1.1), particularly the stochastic trends,
P

0⊥, and
their loadings in terms of ̃⊥ = ⊥ (0⊥⊥)

−1
. The good solution may reproduce

the familiar graph of attractor and error correction in the 2-dimensional case, see

Figure 5.2 in Juselius (2006).

[2] Solutions to the next questions exploits the relationship between the cointegrating

relations, , and the loading to common trend, ⊥, for the particular example of
an interest rate model. For the particular loading, ⊥, in (1.3), the solution should
state that the cointegration space is four dimensional, e.g.
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⎞⎟⎟⎟⎟⎟⎟⎠ 

The solution should note that  is not unique because  and  only enters the

likelihood function through Π = 0, and any choice of ̃ and ̃, with Π̃ = ̃̃
0
= Π

are observationally equivalent. The good solution should note that the interest rates

cointegrate pair-wise in this scenario.

If 1 = 2 = 5 = 10 = 1 it holds that all interest rate spreads,  −  , are

stationary.

[3] In the next scenario, the solution should argue that the proposed  is orthogonal to

the loading to the common trend, e.g. by matrix multiplication, and that interest

rate spreads are not stationary.

[4] Next consider the scenario with three factors in (1.6). In this case

 = (1 : 2) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0

−2 0

1 1

0 −2
0 1

⎞⎟⎟⎟⎟⎟⎟⎠ for  =

⎛⎜⎜⎜⎜⎜⎜⎝
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1

2
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⎞⎟⎟⎟⎟⎟⎟⎠ 

If 10 is omitted from a statistical analysis, then the cointegration relation 2

between 2, 5, and 10 can no longer be recovered. The cointegration rank based

on the data set  = (0 : 1 : 2 : 5)
0 would be expected to be  = 1 and the

cointegration vector would be 1.

The good solution may note that the concept of cointegration is invariant to increases

in the information set, such that a cointegration vector in a small system will also

prevail in a cointegration analysis of an extended information set.
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2 The Statistical Model

[5] The paper should load the data and perform a graphical inspection of the data. It

would be natural to look at the levels of the variables, and note that the time series

do not look stationary, see Figure 1 (A). To look for indications of the empirical

relevance of the theories, the solution could look at spreads between the interest

rates as in (B) and note that they do not look stationary. The candidates from the

three-factor model in (C) appear to be stationary, while the additional cointegrating

relation suggested by the two-factor model in (D) is much more persistent. Based on

the graphical inspection, the three-factor model appears to be the more promising

as a candidate for explaining the variation in the data.

Several outliers are visible in the data, but in (C) none of them appear to change

equilibrium relationships.
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R5 
R10 

1985 1990 1995 2000 2005 2010

10

20 (A) Interest rates

R0 
R1 
R2 
R5 
R10 

R0−R1 
R1−R10 
R2−R10 
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(B) Interest rates spread
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5 (C) Candidates from three-factor model

R0−2⋅R1+R2 
R2−2⋅R5+R10 R1−2⋅R2+R5 
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-5

0

(D) Additional candidate from two-factor model

R1−2⋅R2+R5 

Figure 1: Data in levels and equilibrium candidates from the factor models.

[6] Now the paper should state the unrestricted VAR model of order :

 = Π1−1 +Π2−2 + +Π− + 0 +  + 

for  = 1 2   , and initial values, 0  −+1, given. We assume that  ∼
(0Ω), Ω  0, and that the model has constant parameters.
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In terms of testable assumptions, we could look at Gaussianity, no-autocorrelation,

homoskedasticity, and constant parameters.

Regarding deterministic terms, the model should include a constant, to allow non-

zero means in stationary relationships, potential intervention dummies for outliers,

and potentially a shift dummy for the liberalization of capital flows 2000 : 11.

Some students may have data sets that trends in sample, and may choose to include

a deterministic linear trend. In any case, the choices should be made clear and

motivated, and for interest rates it should be noted that a linear trend is probably

not a good description for longer samples.

[7] To write the likelihood function we use sequential factorization of the joint density

to find

(−+1  0 1   ) = (−+1  0)
Y
=1

( | −1  −)

and the likelihood function for 1   given the  initial observations is the con-

ditional density

() =
(−+1  0 1   )

(−+1  0)
=

Y
=1

( | −1  −)

Under Gaussianity, each term has the form

( | −1  −) = (2)−

2 |Ω|−1

2 exp
¡−1

2
()

0Ω−1()
¢


where () =  −Π1−1 −Π2−2 − −Π− − 0 − .

[8] Now the solution should estimate the unrestricted VAR and check the assumptions

of the model. This includes

• The determination of the number of lags, , in the model. E.g. based on
likelihood ratio tests for the significance of the Π or the use of information

criteria.

• Testing the estimated residuals for signs of misspecification, cf. question [6].
• Construct and include dummy variables for potential outlier to restore normal-
ity of residuals.

The good solution pay particular attention to the observation 2000:11, where

a known shift has taken place. The solution could insert a shift dummy and

note that it is not significant.

• The good solution also checks the constancy of parameters by reporting some
recursively calculated statistics.

It may be necessary to iterate between the steps to find a good model.

For the present data set,  = 3 lags are sufficient to account for the autoregressive

nature of the variables. There are 5 large residuals corresponding to observations:

1986:12, 1988:4, 2000:11, 2002:11, and 2008:5. With these dummies there are no
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signs of misspecifcation, and the parameters appear constant according to recursive

testing. According to −values in Π there are no indications or a level shift in the
model. This conclusion is also confirmed by test for long-run exclusion of a level

shift for all choices of the cointegration rank.

Most solutions tries to be brief here, but they have to document that they know it

is important to have a well-specified model and that they know how to find it.

3 The Cointegration Rank

[9] For a model with  = 3, the preferred choice for my empirical model, the paper

should derive the error correction form of the VAR model, i.e.

∆ = Π−1 + Γ1∆−1 + Γ2∆−2 + 0 +  + 

as in Section 4.2.4 in Juselius (2006). It is not enough to state the solution.

The characteristic polynomial of the error correction form is

() = (1− )−Π − Γ1(1− ) − Γ2(1− )2

A unit root implies that

|(1)| = |−Π| = 0
so that Π has to be singular. A singular matrix, say (Π) = , can be decom-

posed as

Π = 0

where  and  are ×  matrices containing the independent columns and rows of

Π, respectively.
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[10] The eigenvalues of the companion matrix are given by

The Roots of the COMPANION MATRIX // Model: H(5)

Real Imaginary Modulus Argument

Root1 0969 0007 0969 0007

Root2 0969 −0007 0969 −0007
Root3 0934 0000 0934 0000

Root4 0891 −0000 0891 −0000
Root5 0685 0164 0704 0236

Root6 0685 −0164 0704 −0236
Root7 0234 0433 0492 1075

Root8 0234 −0433 0492 −1075
Root9 −0048 0412 0415 1688

Root10 −0048 −0412 0415 −1688
Root11 −0259 0169 0310 2564

Root12 −0259 −0169 0310 −2564
Root13 0160 −0178 0239 −0838
Root14 0160 0178 0239 0838

Root15 −0215 0000 0215 3142

We note that all point estimates are inside the unit circle, but that 3-4 roots are

close to unity. We conclude that the interest rates are not likely to be stationary.

[11] To avoid trends in the model for interest rates, and to have similarity of the LR test

for unit roots, we restrict the constant to be proportional to , i.e. we write the

reduced rank model as

() : ∆ = 

Ã


0

!0Ã
−1
1

!
+ Γ1∆−1 + Γ2∆−2 +  + 

To determine the cointegration rank we consider first the LR test for reduced rank

of Π. In the present case we have a restricted constant and unrestricted intervention

dummies. The latter does not affect the asymptotic distribution, and the critical

values reported by CATS are correct. For the present data set we obtain

I(1)-ANALYSIS

p-r r Eig.Value Trace Trace* Frac95 P-Value P-Value*

5 0 0486 279839 268700 76813 0000 0000

4 1 0160 76431 72897 53945 0000 0000

3 2 0042 23171 21733 35070 0521 0616

2 3 0023 10047 9409 20164 0641 0701

1 4 0009 2894 2649 9142 0608 0653

Two eigenvalues are large, suggesting that the cointegration rank is two in the

present case. There is no doubt on the cointegration rank for the present case,
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and the choice is confirmed by the visual appearance of the candidate cointegrating

relationships, and the −ratios for coefficients in , cf. Juselius (2006), noting how-

ever that the critical values are unknown. A recursive trace test may also be used

to confirm the choice.

[12] With a cointegration rank of  = 2, the three factor model with −  = 3 common

trends, appears to be the empirically most relevant. This was also the impression

from the graphical inspection.

4 Testing Hypotheses

[13] The paper should estimate the CVAR and comment on the results.

The good paper explains that the unrestricted estimates of the cointegrating rela-

tionships are normalized to be conditionally orthogonal, ̂
0
11̂ = . This is math-

ematically convenient, but may not be relevant in terms of economic theory and the

unrestricted estimates are often difficult to interpret. The solution should be careful

not to attach to much structural interpretation to the unidentified relationships. In

the present case we obtain

0

R0 R1 R2 R5 R10 CONSTANT

Beta(1) 0144 −0273 1000 −1726 0821 0606

Beta(2) 1000 −1910 0950 −0230 0344 −2240

where the true structure is actually visible. The error correction is given by the

matrix (−ratios in parentheses)



Alpha(1) Alpha(2)

DR0 −0050
[−1179]

−0114
[−4572]

DR1 0076
[1776]

0027
[1089]

DR2 −0133
[−3037]

0007
[0281]

DR5 0042
[0859]

−0033
[−1156]

DR10 0038
[0807]

−0021
[−0760]

indicating that the long-term bond rates do not error correct.

Regarding the short-run parameter there are quite a few significant parameters in

Γ1 and Γ2 and the dummies for outliers are clearly significant.

[14] Estimates of the unrestricted VAR are obtained by solving a generalized eigenvalue

problem ¯̄
11 − 10

−1
00 01

¯̄
= 0
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where  = −1
P


0
 where 0 and 1 are ∆ and −1 corrected for the

unrestricted terms in the model. The eigenvalue problem has the advantage of having

a closed form solution and being numerically robust. In addition the normalization

is implicit, and we do not have to impose identifying restrictions from the outset.

Finally the procedure estimates the models () for all values of the cointegration

rank, , in one solution, which is very convenient for rank testing.

The main disadvantage is that it has to be modified and changed whenever restric-

tions are imposed on the parameters.

A more general alternative would be to maximize the likelihood function in question

[7] numerically with respect to the parameters in . While this is very flexible and

allow complicated restrictions on all parameters, it requires that the parameters are

identified. Early in the analysis, before we have a full overview of the properties of

the variables, it is inconvenient that identification is required.

[15] The paper should explain the Granger representation

 = ⊥
¡
0⊥Γ⊥

¢−1
0⊥

X
=1

( + ) +∗() ( + ) + 0 + 1

The paper should note that  = ̃⊥0⊥ has reduced rank  − , that the common

stochastic trends are given by 0⊥
P

=1  and that they affect the variables with the

loading coefficients ̃⊥ = ⊥ (0⊥Γ⊥)
−1
. The paper should note that the shocks

0⊥ have permanent effects while the shocks 
0 have only transitory effects. The

parameters of the Granger representation reads

0⊥
R0 R1 R2 R5 R10

CT(1) −0267
[−0863]

0000
[]

0419
[0903]

1000
[]

0000
[]

CT(2) 0269
[0764]

1000
[]

0469
[0887]

0000
[]

0000
[]

CT(3) −0162
[−0573]

0000
[]

0346
[0815]

0000
[]

1000
[]

The Loadings to the Common Trends, ̃⊥:

CT1 CT2 CT3

R0 −1747
[−2686]

1580
[4386]

0821
[3297]

R1 −1165
[−1861]

1276
[3680]

0862
[3599]

R2 −0258
[−0373]

0973
[2543]

0554
[2094]

R5 −0634
[−1357]

0584
[2258]

0977
[5469]

R10 −1100
[−3104]

0190
[0969]

1524
[11243]
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and the the long-run impact matrix, , is given by

The Long-Run Impact Matrix, 

R0 R1 R2 R5 R10

R0 0759
[3370]

1580
[4386]

0294
[0843]

−1747
[−2686]

0821
[3297]

R1 0515
[2376]

1276
[3680]

0409
[1219]

−1165
[−1861]

0862
[3599]

R2 0241
[1009]

0973
[2543]

0540
[1458]

−0258
[−0373]

0554
[2094]

R5 0168
[1040]

0584
[2258]

0347
[1385]

−0634
[−1357]

0977
[5469]

R10 0098
[0798]

0190
[0969]

0156
[0820]

−1100
[−3104]

1524
[11243]

The solution should again explain the idea of the common trends and the loadings.

The solution may refer to the theoretical model, and the good solution notes that

normalization of ⊥ in CATS makes it difficult to recognize the level, slope and
curvature. We could rotate ̃⊥ to get get closer to the theoretical framework, and
the students have a small piece of software to do that, but here it is not strictly

required.

In the present case, − = 3, we could impose one normalization and two restrictions
on each columns of ⊥ by rotation to obtain, e.g.

̃⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

108502 034298 087280

1 1
2

2

096595 071012 101944

1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ 

which is close to the theoretical setup in (1.6).

[16] The test for long-run exclusion is a subspace restriction of the form

H0 : ̃ = 

where ̃ =
¡
0 : 00

¢0
is the augmented cointegration matrix,  is the ( + 1) × 

design matrix and  contains the  ·  free parameters. To test exclusion of 0 we
use

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


and the LR statistic (H0 | ()) is 2() under the null.
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The automatic test for exclusion in CATS may be used as long as the set up of the

test is explained. For the present data the automatic test produces

TEST OF EXCLUSION

r DGF 5% C.V. R0 R1 R2 R5 R10 CONSTANT

1 1 3841 9775
[0002]

10506
[0001]

114914
[0000]

149105
[0000]

115775
[0000]

3672
[0055]

2 2 5991 47330
[0000]

50117
[0000]

149734
[0000]

177317
[0000]

121059
[0000]

6658
[0036]

3 3 7815 52357
[0000]

55977
[0000]

149781
[0000]

181330
[0000]

126951
[0000]

11732
[0008]

4 4 9488 54074
[0000]

59958
[0000]

154036
[0000]

183176
[0000]

130897
[0000]

15924
[0003]

For the preferred,  = 2, no variables can be excluded. The constant is borderline,

but it is not recommended to exclude the constant early in the analysis.

If a variable is excludable it does not imply that the variable can be removed from

the model altogether. There may still be imporatant short run effects involving

the variable, and the particular equation could contain information on the other

cointegrating coefficients.

[17] Next the solution should explain that a zero row in  implies that the corresponding

variable is weakly exogenous for , . this means that  and  can be estimated

efficiently in a model for the remaining variables conditional on the weakly exogenous

variables.

The solution should explain the idea of conditional models. At least it should be

noted that  and  does not appear in the marginal equation for the weakly exoge-

nous variable. If we used only the marginal equations for the endogenous variables

to estimate  and , however, we would loose the contemporaneous effects in the

covariance matrix, and efficient estimation requires that we condition, and include

the contemporaneous effect of the exogenous variable.

For the present data we get

TEST OF WEAK EXOGENEITY

r DGF 5% C.V. R0 R1 R2 R5 R10

1 1 3841 1167
[0280]

3042
[0081]

8874
[0003]

0712
[0399]

0629
[0428]

2 2 5991 19525
[0000]

4115
[0128]

8947
[0011]

1887
[0389]

1122
[0571]

3 3 7815 21304
[0000]

5093
[0165]

9353
[0025]

1908
[0592]

2784
[0426]

4 4 9488 21670
[0000]

7129
[0129]

12419
[0014]

5958
[0202]

6457
[0168]

and for  = 2, to two longest maturities are (individually) weakly exogenous, while

1 is borderline. A joint test for 5 and 10 jointly weakly exogenous gives a test

statistic of 2.105 or a − value of 0.716 in the asymptotic 2(4). A joint test of

1 5 10 weakly exogenous rejects, with a 2(6) statistic of 13.072.
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Weak exogeneity of the variables, and the zero rows in  implies the presence of two

unit vector in ⊥, and in the particular case of 5 and 10 weakly exogenous:

0⊥
R0 R1 R2 R5 R10

CT(1) 0539
[1588]

1000
[]

0100
[0282]

0000
[]

0000
[]

CT(2) 0000
[]

0000
[]

0000
[]

1000
[]

0000
[]

CT(3) 0000
[]

0000
[]

0000
[]

0000
[]

1000
[]

Two common trends are generated by 5 and 10 alone, while the last common

trend is the accumulated effect of 1 + 05390 + 012.

5 Identification

[18] The paper should look at the three factor model and show that it is generically

identified. For this case we would have

̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 · 1 0

−2 · 1 0

1 · 1 1 · 2
0 −2 · 2
0 1 · 2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1

−2
1

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ (1) :
⎛⎜⎜⎜⎜⎜⎜⎝

0

0

1

−2
1

⎞⎟⎟⎟⎟⎟⎟⎠ (2)
⎞⎟⎟⎟⎟⎟⎟⎠ = (11 : 22) 

where  is a free parameter to be estimated. Correspondingly,

1 = 1⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
2 0 0 0

1 1 0 0

0 2 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ and 2 = 2⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 2 0

0 0 1 1

0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠ 

Now the structure is identifying if


¡
012

¢ ≥ 1


¡
021

¢ ≥ 1

By direct matrix multiplication this is seen to be true (with equality).

[19] Now we impose a just identifying structure inspired from (1.7). For a particular

choice we get

0

R0 R1 R2 R5 R10 CONSTANT

Beta(1) 1000
[]

−1910
[−18213]

0833
[7896]

0000
[]

0239
[2016]

−2366
[−2067]

Beta(2) 0000
[]

0002
[0059]

1000
[]

−1961
[−31209]

0893
[15877]

1076
[2758]


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which is quite close to the theoretical candidates, and adjustment given by



Alpha(1) Alpha(2)

DR0 −0121
[−4721]

−0057
[−1532]

DR1 0038
[1481]

0070
[1855]

DR2 −0012
[−0450]

−0116
[−3006]

DR5 −0027
[−0918]

0033
[0767]

DR10 −0015
[−0546]

0031
[0745]

Imposing over-identifying restrictions reveals the theoretical structure

0

R0 R1 R2 R5 R10 CONSTANT

Beta(1) 1000
[]

−2000
[]

1000
[]

0000
[]

0000
[]

−0100
[−0749]

Beta(2) 0000
[]

0000
[]

1000
[]

−2000
[]

1000
[]

0143
[3326]



and the equilibrium adjustment



Alpha(1) Alpha(2)

DR0 −0113
[−4615]

−0044
[−1186]

DR1 0031
[1256]

0067
[1790]

DR2 −0017
[−0667]

−0118
[−3063]

DR5 −0025
[−0866]

0030
[0689]

DR10 −0002
[−0075]

0022
[0528]

This reduction is valid with a test statistic of 7.232 corresponding to a −value of
0.300 in the asymptotic 2(6). Here we could still accept the two zero rows in ,

but the students are not specifically asked to impose that. Nevertheless the results

are

0

R0 R1 R2 R5 R10 CONSTANT

Beta(1) 1000
[]

−2000
[]

1000
[]

0000
[]

0000
[]

−0105
[−0756]

Beta(2) 0000
[]

0000
[]

1000
[]

−2000
[]

1000
[]

0143
[3292]
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and



Alpha(1) Alpha(2)

DR0 −0099
[−4024]

−0056
[−1482]

DR1 0053
[2150]

0048
[1277]

DR2 0008
[0319]

−0141
[−3711]

DR5 0000
[0000]

0000
[0000]

DR10 0000
[0000]

0000
[0000]

[20] The granger representation for this case is given by

0⊥
R0 R1 R2 R5 R10

CT(1) 0000
[]

0000
[]

0000
[]

1000
[]

0000
[]

CT(2) 0000
[]

0000
[]

0000
[]

0000
[]

1000
[]

CT(3) 0542
[1496]

1000
[]

0125
[0337]

0000
[]

0000
[]

and

The Loadings to the Common Trends, ̃⊥:

CT1 CT2 CT3

R0 −1680
[−1582]

0981
[2476]

1524
[3915]

R1 −0387
[−0347]

0575
[1381]

1164
[2847]

R2 0906
[0660]

0168
[0328]

0804
[1597]

R5 −0006
[−0006]

0848
[2501]

0505
[1517]

R10 −0918
[−1480]

1527
[6600]

0206
[0906]

and the students should discuss this (with or without weak exogeneity). Again it is

not easy to recognize ⊥, but the students should realize that we may rotate to get,
exactly,

̃⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

1 1
4
1

1 1
2
2

1 3
4
1

1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ and ⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
082601 −071436 −001653
152400 −131800 −003050
019050 −016475 −000381
−168000 076200 110250

098100 054600 −054300

⎞⎟⎟⎟⎟⎟⎟⎠
where the permanent shocks are now more complicated to interpret; this just reflects

that the level, slope and curvature are not simple accumulated shocks to simple

equations.
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6 Extensions

[21] The granger representation is given by

 = 

X
=1

 + ∗0 + ∗1−1 + ∗2−2 + +

where  depends on initial values,  = ⊥ (0⊥Γ⊥)
−1

0⊥, and ∗ are convergent.
The idea of the structural MA form is to find a representation

 = −1
X

=1

 + ∗0
−1 + ∗1

−1−1 +∗2
−1−2 + +

= 

X
=1

 +∗0 +∗1−1 +∗2−2 + +

with structural shocks  = . Typically, we require  [
0
] = , such that the

structural shocks are orthogonal, at it is straightforward to interpret the impulse

response functions.

Now the solution could explain that the orthogonalization of shocks involves at

Choleski decomposition, and that the zeros in the lower triangular Choleski factor

can be places in the long-run impact  by a suitable rotation. This material is quite

detailed, and the notation is not easy, but the answer should have an idea about the

reason for doing it and an idea about the implementation.

For our case of  = 5 and  = 2, the true loading to the interpretable factors (level,

slope and curvature) is ⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

1 14 1

1 24 2

1 34 1

1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ 

and a natural identification for the structural long-run impact matrix could be

 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 ∗ 0 0

0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ 0

⎞⎟⎟⎟⎟⎟⎟⎠ 

where ∗ is an unrestricted coefficient, and  [
0
] = . For the current data the

estimated long-run impact (based on the over-identified  and  unrestricted is

̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0 0

0 0 0899 0339 0500

0 0 0798 0678 1

0 0 0523 0839 0500

0 0 0248 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ 
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The reason that the impact of the first factor does not resemble a level factor is that

maintained assumption  [
0
] =  is not valid for the ’economic’ shocks. In this

case the structural model is difficult to interpret and difficult to reconcile with the

theoretical results. This question is probably difficult.

[22] This may also be a difficult question that asks them to build a model for a new case,

and we do not require very much. In the homoskedastic case, |−1  − ∼
(0Ω), then the likelihood function is given by

() =

Y
=1

( | −1  −)

where each term is given by

( | −1  −) = (2)−

2 |Ω|−1

2 exp
¡−1

2
()

0Ω−1()
¢


and

() =  −
X
=1

Π− − 0 − 

The parameters are Ω and  = {Π1 Π 0 }.
In the case of multivariate ARCH, i.e. if |−1  − ∼ (0Ω), with conditional

covariance matrix given by

Ω = Ω+−10−1
0

the likelihood function is the same with each term replaced with

( | −1  −)

= (2)−

2 |Ω|−

1
2 exp

¡−1
2
()

0Ω−1 ()
¢

= (2)−

2

¯̄
Ω+()−1()0−1

0¯̄−1
2 exp

³
−1
2
()

0 ¡Ω+()−1()0−1
0¢−1 ()´ 

where the parameters are now Ω  and  = {Π1 Π 0 }. There is no closed
form solution, but the likelihood function can be maximized using a standard nu-

merical procedure.
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